Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice.

نویسندگان

  • Henna Tyynismaa
  • Katja Peltola Mjosund
  • Sjoerd Wanrooij
  • Ilse Lappalainen
  • Emil Ylikallio
  • Anu Jalanko
  • Johannes N Spelbrink
  • Anders Paetau
  • Anu Suomalainen
چکیده

Defects of mitochondrial DNA (mtDNA) maintenance have recently been associated with inherited neurodegenerative and muscle diseases and the aging process. Twinkle is a nuclear-encoded mtDNA helicase, dominant mutations of which cause adult-onset progressive external ophthalmoplegia (PEO) with multiple mtDNA deletions. We have generated transgenic mice expressing mouse Twinkle with PEO patient mutations. Multiple mtDNA deletions accumulate in the tissues of these mice, resulting in progressive respiratory dysfunction and chronic late-onset mitochondrial disease starting at 1 year of age. The muscles of the mice faithfully replicate all of the key histological, genetic, and biochemical features of PEO patients. Furthermore, the mice have progressive deficiency of cytochrome c oxidase in distinct neuronal populations. These "deletor" mice do not, however, show premature aging, indicating that subtle accumulation of mtDNA deletions and progressive respiratory chain dysfunction are not sufficient to accelerate aging. This model is a valuable tool for therapy development and testing for adult-onset mitochondrial disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion.

Infantile-onset spinocerebellar ataxia (IOSCA) is a severe neurodegenerative disorder caused by the recessive mutation in PEO1, leading to an Y508C change in the mitochondrial helicase Twinkle, in its helicase domain. However, no mitochondrial dysfunction has been found in this disease. We studied here the consequences of IOSCA for the central nervous system, as well as the in vitro performance...

متن کامل

Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number.

Mechanisms of mitochondrial DNA (mtDNA) maintenance have recently gained wide interest owing to their role in inherited diseases as well as in aging. Twinkle is a new mitochondrial 5'-3' DNA helicase, defects of which we have previously shown to underlie a mitochondrial disease, progressive external ophthalmoplegia with multiple mtDNA deletions. Mouse Twinkle is highly similar to the human coun...

متن کامل

Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling

Mutations in the mitochondrial helicase Twinkle underlie autosomal dominant progressive external ophthalmoplegia (PEO), as well as recessively inherited infantile-onset spinocerebellar ataxia and rare forms of mitochondrial DNA (mtDNA) depletion syndrome. Familial PEO is typically associated with the occurrence of multiple mtDNA deletions, but the mechanism by which Twinkle dysfunction induces ...

متن کامل

Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice.

Mitochondrial dysfunction is an important cause of metabolic disorders of children and adults, with no effective therapy options. Recently, induction of mitochondrial biogenesis, by transgenic overexpression of PGC1-alpha [peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1-alpha], was reported to delay progression of early-onset cytochrome-c-oxidase (COX) deficiency in skelet...

متن کامل

Role of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups

Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 49  شماره 

صفحات  -

تاریخ انتشار 2005